

Options for Renewable Natural Gas (RNG) in a Low-Carbon Future

Processing Methods for Large Scale Conversion of Seaweed to Energy-Relevant Products

November 16

Jack Lewnard
Program Director, DOE ARPA-E Agency
<u>Jack.lewnard@hq.doe.gov</u>

Natural gas use today

US uses 32 quad natural gas, emits 2.1 B ton CO₂

- ▶ 11 quads Power Generation
- ▶ 10 quad Industrial
- 1 quad for Chemicals
- 9 quad Residential/
 Commercial, primarily for heat

Large, constant loads served by interstate pipelines

Small, seasonal loads served by gas utilities

1 quad Parasitic load – compressors

Best Fit for RNG: Decarbonizing Res/Com Segment

Current	Delivery point	\$/MMBtu	\$/MWhr
Natural Gas	Henry Hub	2.57	9
	Power Plant	2.98	10
	Industrial	3.85	13
	Commercial	7.28	25
	Residential	12.80	44
Electricity	Power Plant	19.42	61
	Industrial	21.65	68
	Commercial	31.06	106
	Residential	41.38	130

- Res/Com will be the most expensive sector to decarbonize
- Res/Com already pays the highest price for delivered energy
 - Electricity 3-4X cost of gas
 - Alternatively, there's a lot "space" to pay more for RNG
- Electrification requires massive expansion of electric generation, T&D, and retrofitting 75 MM homes and businesses
- Replacing fossil gas with renewable gas requires massive expansion of RNG production

Electrification Challenge: CAPEX for Supply Chain

- Adding thermal load will require major expansion of Res/Com T&D
 - Electric grid winter peaks increase 2-3X
 - >2X expansion of electric T&D
 - T&D costs amplified by < 50% utilization
 - Need to upgrade service and replace gas appliances for 75 MM customers
- Conversions are expensive, disruptive, and difficult to execute
 - "Death spiral" for unconverted customers
- Res/Com electric grid also targeted for vehicle electrification
 - Demand potentially larger than thermal peak

RNG: Can Afford to Pay More, but Need New Sources

- US uses 32 quads of gas; Res/Com 9 quads
- ~1-3 quads RNG from "Traditional" sources (manure, wastewater, landfill)
- ~5 quads (max) from sustainable biomass (wood, energy crops)
- Power-to-Gas (P2G) limited only by cost

Figure 29. Combined source supply curve of RNG

RNG Cost curve - California

Renewable feedstock competitors

- Competitive line-up
 - Seaweed
 - Biogas (manure, wastewater, landfills)
 - Wood
 - FOGs (fats, oil, grease)
 - Electricity (Power-to-Gas; Power-to-X)
 - Fossil natural gas
 - With DAC (net zero carbon for all applications)
 - With CCS (net zero carbon for power generation)
- Issues
 - Cost
 - Availability
 - Transport-ability
 - Store-ability
 - Community license to operate

RNG Sources and Economics - Traditional

Feed	Feed Cost (\$/MMBtu)	Process	RNG production (\$/MMBtu)	Issues
Dairy manure	"free" manure, sometimes has negative value	AD/membrane/ compressor	\$8-30	Scale – typically small. 1000 cows = 40K scfd. Distant from population, gas infrastructure Economical due to low CI
Wastewater treatment gas	"free" raw gas, unless used in boilers	2-stage clean-up/ compressor	\$6-10	Few plants at ~1MM SCFD scale; near population
Landfill gas	"free" raw gas – regulations require collection	Multi-train clean-up/compressor	\$6-15 @ 2MM SCFD	Need large scale to be economic

RNG Sources and Economics – "Novel"

Feed	Feed Cost (\$/MMBtu)	Process	Processing cost (\$/MMBtu)	Issues			
Seaweed	\$100/dry ton = \$9/MMBtu	Assume same as dairy?	\$15-50 Assume production costs same as dairy?	Scale Location: proximity to population and gas infrastructure Thermal balance for digester			
Wood	\$5-10/MM Btu	Gasification	\$13-15	Scale: 900 tpd wood, 8MMSCFD			
Renewable electricity + DAC		Power-to-gas	\$25+	2030 estimate			
Fossil gas with DAC	\$4 (interstate pipeline delivery)	DAC:\$50-250/ton CO2	\$4+ \$3.4 = \$7.4 \$4 + 17 = \$21	Acceptable to continue burning fossil fuel?			
Fossil gas with CCS	\$4 (interstate pipeline delivery)	CCS: \$100/ton CO2	\$4 + \$6.8 = \$11	Relevant for power gen only			

Reality Check: 80% GHG Reduction CA by 2050

Energy+Environmental Economics (2015) bottom-up analysis Pathways (v.2.1)

- Electrification scenario, where all energy end uses, to the extent feasible, are electrified and powered by renewable electricity by 2050;
- Mixed scenario, where both electricity and decarbonized gas play significant roles in California's energy supply by 2050
- Parity within error of model:
- Renewable CH₄ in 2050
 \$20-25/MMBtu Anaerobic digester
 \$30-138/MMBtu Electrolysis +
 methanation + DAC
- Renewable H₂ in 2050
 \$24-112/MMBtu Electrolysis
 limited to 20% concentration in pipeline
- Gas demand unchanged from reference (do nothing) case, but fossil gas <10%, RNG >80%, balance CH₄ and H₂ from electrolysis

Conclusions

- RNG's best fit is decarbonizing Res/Com sector
 - but role will be limited if it's ok to burn fossil gas and compensate with DAC
- RNG needs new sources
 - Possibly wood, seaweed, P2G
- ► To compete, novel feedstocks need to:
 - Beat Res/Com heating electrification
 - Reduce feedstock cost, minimize logistics/transportation,
 - If using digester, needs to be thermally neutral or positive
 - Be at scale, >100,000 scfd
 - Have carbon selectivity to methane > 50%
 - Possibly upgrade waste CO₂ to methane?
 - Get built close to population centers and existing gas infrastructure

Manage Supply/Demand Swings

Need long-term storage and largescale transmission

- Res/Com thermal loads drive annual energy swings
 - Major winter heating peaks
 - Minor summer cooling loads
- Renewable generation peaks not in sync with demand
- Natural gas storage balances supply/demand for thermal and electric loads today
- Best renewable resources not near population centers, and

Factors in End Users' Energy Cost

- Energy cost
- ► Transmission, Distribution, Storage
 - Regulated energy systems designed to meet peak load, often few hours/year
 - Electric grid: peak + 10-20% reserves
 - Gas grid: "design day" (coldest temp)
 - Northern electric and gas utilities are both winter-peaking
 - Southern utilities seeing increases in summer peaks
- End Use Appliance Cost
 - Replacement costs
 - Service upgrades

Why RNG: Natural gas use today

US uses 32 quad natural gas, emits 2.1 B ton CO₂

- 11 quads Power Generation, 1580 TWhr electricity
- ▶ 10 quad Industrial
 - 3 quad combined heat/power, 500 TWhr
 - 7 quad heat

16 quad heat

- 9 quad Res/Com for heat
- 1 quad for Chemicals
- 1 quad Parasitic load compressors

14 quad power

Gas Grid for Large Scale Energy Storage/Transmission

- US NG storage capacity 4.8 quad/830 TWhr
 - \$83 T CAPEX for Li battery @\$100/kw-hr
 - Infrastructure in place
 - Zero self-discharge
 - Gas storage costs <\$1/kW-hr for a year of storage
- Gas transmission
 - >250,000 miles high-pressure gas transmission
 - 42" pipeline carries ~40 GW(thermal) for 2500 miles with ~2% parasitic load for compressors
 - 765 kV transmission line carries 2.3 GW(electric) for 300 miles with ~1.5% power loss
 - Cost to move gas 2500 miles ~\$1.5/MMBtu

Electricity Generation: Green Gas vs CCS vs All Renewables

NETL Cost and Performance Baseline for Fossil Plants

- NGCC/CCS vs NGCC with Green Gas
 - CCS adds ~\$31.1/MW-hr to NGCC LCOE
 - Base case gas cost \$4.42/MMBtu
 - Parity GG cost \$9.31/MMBtu
 - Coal/CCS vs with NGCC Green Gas
 - Subcritical coal/CCS \$116/MW-hr
 - Supercritical coal/CCS \$114/MW-hr
 - Parity CC cost \$15.80/MMBtu
 - No infrastructure investment required for Renewable CH₄ - drop-in fuel in NGCC

Green Gas Production in the Energy Landscape

"Feeds" intersect with:

- Biomass-to-energy (~5 quad carbon limitation)
- ► H₂ Economy
- Carbon Capture/Utilization ("unlimited" carbon)
- Zero-carbon electricity

Applications intersect with:

- Res/Com/Industrial/Power Gen/Transportation applications for natural gas and hydrogen
- Decarbonizing the gas grid
- Power-to-Gas (P2G)
- Energy storage, integration of renewables in the electric grid
- Maximizing carbon yield for biofuels and chemicals

Processes intersect with:

- Anaerobic digestion, biomasss gasification, synthetic biology, electrobiology
- H₂ production nuclear/thermal, electrochemical, methane pyrolysis
- CO₂ conversion biological, catalytic, electrochemical, photochemical

Bracketing Solutions

Option	NG grid mix/flow Quad/(Bft ³ /hr)	New pipes	CCS MM ton/yr)	Electric generation/ storage	Electric T&D	End user	CO2
Base case	32 Q Fossil 4 Bft ³ /hr	0	0	100 GW wind, 100 GW nuke 450 GW natural gas 1000 GW total	5.5. MM miles T&D 4100 TWhr	No Change	2.2 B ton/yr
1: Use existing technology Maximize use of biogas (0.4 Q) + biomass (1 B ton, 10 Q) Replace gas power with renewables	6 Q RNG 15 Q Fossil 3 Bft ³ /hr	0	0	450 GW wind + >3 TWhr storage Or 200 GW nuclear + <2 TWhr storage	No Change	No Change	2.8 B ton/yr
2a: 1+ CCS on gas- fired power	6 Q RNG 26 Q Fossil 4 Bft ³ /hr	1.4 Bft ³ /hr CO2 grid	800	No Change	No Change	No Change	1B ton/yr
2b: 1+ replace gas power with renewables	6 Q RNG 15 Q Fossil 3 Bft ³ /hr		No Change		No Change	No Change	1B ton/yr

Bracketing Solutions – Assume CCS for NG-fired electricity

Option	NG grid mix/flow Quad/(Bft³/hr)	New pipes (Bft³/hr)	ccs	Additional Electric generation/ storage	Electric T&D	End user	CO2 MMTon /yr
3: 1 + 2a + electrify everything else	6 Q RNG 11 Q Fossil 2 Bft ³ /hr	1.4 Bft ³ /hr CO2 grid	800 MM ton/yr	1400 GW wind >3 TWhr storage or 600 GW nuke + >2TWhr storage	Increase peak capacity >3X for winter- peaking utilities	Convert 70% of 80 MM Res/Com customers to electricity	0
3: 1 + 2a + H2 with load-following electrolysis located at power plants	6 Q RNG 11 Q Fossil 2 Bft ³ /hr	1.4 Bft ³ /hr CO2 grid + 5.6 Bft ³ /hr H2 grid	800 MM ton/yr	1700 GW wind or 750 GW nuke	No change	Convert 70% of 80 MM Res/Com customers to H2	0
3: 1 + 2a + CH4 with load-following electrolysis located at power plants	6 Q RNG 11 Q Fossil 15 Q e-CH4 4 BBft ³ /hr	3.3 Bft ³ /hr CO2 grid	800 MM ton/yr + 1100 MM ton/yr DAC for e-CH4	>2000 GW wind or >1000 GW nuke	No change	No change	0

